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Abstract 

OpenStreetMap (OSM) data and Sentinel-2 (S2) satellite images were combined to derive land use and land 

cover (LULC) for a large area in Europe using state-of-the-art Deep Learning (DL) technologies. Training data 

was synthetized by deriving a classification from OSM features similar to Corine Land Cover (CLC) level 2 and 

in parts complemented with S2 images from the meteorological summer of 2018. Data preparation, setup and 

training enables the application of a Fully Convolutional Network (FCN), using the Python Deep Learning library 

Keras and the Machine Learning (ML) platform Tensorflow. Once trained, the FCN was applied in an automated 

workflow to produce LULC maps with 10m spatial resolution and temporal and spatial flexibility. Results were 

subjected to an accuracy assessment and achieve overall accuracies of 62.2% for the study area and 82.9% for 

a small reference area. However, individual class performances varied largely in terms of map proportions and 

estimated classification accuracy. The results indicate that large-scale LULC maps created with the proposed 

approach cannot be considered reliable across the full spectrum of land use, but contain accurate information, 

depending on certain class memberships. This work identified wide-ranging challenges and offers multiple 

measures to help improve predictions in the future. Moreover, it illustrates an approach for the fast and simple 

creation of LULC maps, dealing with cloud cover, seasons and inputs of various sizes. Finally, this thesis 

proposes a modular, end-to-end workflow and uses open data and open-source software to facilitate 

reproducibility and continued improvement.  
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1 Introduction 

Over the course of the Holocene (11.650 BC – today) humans have made changes to over 50% of the earth’s 

landmass with accelerating speed. Anthropogenic land use (LU) changes have a decisive impact on the earth’s 

ecosystem, strongly influencing atmospheric conditions, biodiversity, sedimentation and surface 

characteristics (Waters et al., 2016). Also, land use and land cover (LULC) information play an important role 

for human societies. They are key components for spatial planning and development, natural resource 

management, vulnerability and risk management. Environmental applications of LULC information include 

climate modelling, environmental assessments and monitoring (Jones, 2008). Today, economic as well as 

political players profit from accurate and up-to-date LULC maps as they help making more informed, evidence-

based decisions  (Kussul et al., 2017; Thanh Noi and Kappas, 2018). 

The surface cover of an area is defined as land cover (e.g. forests, buildings, fields), whereas the purpose of 

the land is described as its land use (e.g. agriculture, recreation, pasture). Consequently, LULC maps provide 

an overall picture over human activities and natural elements on the earth’s surface (Fisher et al., 2005). There 

are many existing global, regional and local LULC products with different degrees of topicality, spatial 

resolution, accuracy and complexity. These include global products, such as GlobeLand30 and GlobCover, as 

well as regional and continental products, such as Corine Land Cover (CLC), Urban Atlas (UA) and the National 

Land Cover Database (NLCD). 

Producing and validating LULC maps can be costly, since datasets are often created by collecting and 

interpreting information in the field alongside remote sensing (RS) data (Lavreniuk, 2017; Ndikumana et al., 

2018). The classification process normally requires manual or semi-automatic interpretation of remote sensing 

(RS) images, carried out by experts (Kussul et al., 2017; Nguyen et al., 2018; Thanh Noi and Kappas, 2018). 

Thus, these products suffer from long update cycles and coarse spatial resolution (Fonte et al., 2016). 

To compensate for those shortcomings, Web 2.0 based applications from the area of Volunteered 

Geographical Information (VGI) were proposed (Sui et al., 2012). Supported by millions of volunteers, the 

OpenStreetMap (OSM) project provides open source spatial information on a global scale (Wiki, 2019a). In 

combination with numerous new RS datasets (Kussul et al., 2017) studies confirm high potential of OSM data 

as a source for LULC maps (Estima and Painho, 2013; Fonte et al., 2017; Schultz et al., 2017). 

Nevertheless, using OSM data for LULC applications involves several challenges. In particular, these include 

overlapping geometries, incorrect object descriptions (tags), temporal inhomogeneity and spatial gaps (Fonte 

et al., 2016; Schultz et al., 2017). Quality and integrity of OSM data largely depend on the contributor’s activity, 

which can make OSM data unusable for LULC products (Arsanjani et al., 2015). Comparing official LULC 

products (e.g. CLC) with those derived from OSM can be challenging, since harmonizing both nomenclatures 

entirely is often very difficult (Arsanjani and Vaz, 2015; Estima and Painho, 2013; Schultz et al., 2017).  

The goal of this thesis is to design and examine a Deep Learning (DL) model in order to predict LULC classes, 

using Sentinel-2 (S2) imagery in combination with OSM data. Also, issues regarding existing LULC products are 

addressed. First, the proposed approach allows for an automatic generation of LULC maps with temporal 
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flexibility and spatial transferability. It resolves spatial incompleteness of raw OSM data by integrating S2 

images to create a more detailed product. Lastly, this product is comparable with CLC and UA, using large parts 

of their nomenclatures.   

 

1.1 Research Questions 

In this thesis, the following research questions are addressed: 

1. How can 10m RGB Sentinel 2 data and OSM features be combined within a Deep Learning framework 

to obtain a land use classification? 

The workflow presented in the following chapter (Chapter 2) illustrates one way of implementing such a task. 

Every step leading to this specific workflow incorporates considering and justifying different choices. 

2. What is the suitability of OSM features for LULC mapping? 

To address this question, an accuracy assessment of the resulting classification is performed. Using a confusion 

matrix, overall accuracy, producer’s accuracies and user accuracies are estimated.   
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2 Methods 

In this chapter data sources, classification methods and key concepts of Deep Learning in relation to this thesis 

are presented. Building on this, every step of the proposed approach is presented. 

First, an introduction to the characteristics of the data sources used in this work and their acquisition is given 

(Chapter 2.1). This is followed by presenting general concepts of Machine Learning and increasingly specific 

Deep Learning concepts and techniques, such as Neural Networks, Convolutional Neural Networks and Fully 

Convolutional Networks (Chapter 2.2). At the end, the proposed approach is presented, including 

considerations derived from related studies and data sources (Chapter 2.3).  

In a nutshell, the suggested approach can be described as follows: First, relevant OSM polygons and S2 images 

are obtained for the same areas. Afterwards, OSM data is classified by using a legend similar to the Corine 

Land Cover. Furthermore, a cloud detection algorithm facilitates the inclusion of an additional cloud class 

during several preprocessing steps. Annotation images present the basis for the training process of a Deep 

Learning classifier. After preparing and splitting patches of annotation and corresponding S2 images into 

training, validation and test datasets, a Fully Convolutional Network is employed for training and testing. The 

pretrained network is then utilized to train a second Fully Convolutional Network with a selected subset of the 

original dataset. This classifier is applied to predict S2 images for the chosen study area. Finally, the resulting 

LULC map is subjected to an accuracy assessment, where (class-wise) classification accuracy measures are 

determined. In addition, a VGI reference dataset is employed to provide additional insights about the 

classification (Figure 1). 

 

 

Figure 1: Diagram of the proposed workflow.  
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2.1 Data 

This chapter describes datasets used to train, validate and test the Fully Convolutional Network (FCN) classifier. 

All external datasets are freely available and easily obtainable to ensure reproducibility and future 

improvement of the presented approach. 

 

2.1.1 OpenStreetMap 

Established in 2004, the OpenStreetMap (OSM) project today presents the biggest, most complete open-

source geodatabase in the world. It is voluntarily built and updated by more than 5 million registered users 

(Wiki, 2019a) making it the largest Volunteered Geographical Information (VGI) project overall. Published 

under the Open Database License (ODbL), anyone can copy, share and alter OSM data, provided that OSM is 

cited appropriately and derived products are also published under the ODbL license. Contributors to OSM can 

add any spatial and thematic content they want - from a single bench to whole forests. Together with its free 

availability, this content diversity and abundance has made OSM an attractive data source for many use cases 

(Fonte et al., 2017).  

OSM data are presented in a custom vector format, together with thematic information and comprises of 

nodes (point features), ways (line features) and relations (geometric collections, e.g. polygons). Thereby, there 

are no restrictions on the minimum mapping unit (MMU) for any application. Attributes for each geometrical 

feature are described through multiple tags. One tag consists of a key (general topic or type) and a value 

(specific form of the feature), which must be provided in pairs (e.g. highway=motorway). Although there is a 

list of established tags suggested by the OSM Wiki page (Wiki, 2019b), contributors are not restricted to any 

of those (Schultz et al., 2017).  

When dealing with VGI information like OSM data, one central issue is always its quality. Just like the Wikipedia 

project, OSM relies on its contributors to provide complete, accurate and up-to-date information. The 

International Organization for Standardization (ISO) published a standard that defines the quality of geodata 

through the following five parameters: completeness, logical consistency, positional accuracy, temporal 

accuracy, and thematic accuracy (ISO, 2013). Many studies investigated OSM data towards those parameters 

for different use cases, highlighting its strengths and weaknesses.  

OSM data may lack spatial and thematic coverage. This results in an uneven distribution of the data, leading 

to data gaps and missing thematic information (Neis and Zielstra, 2014; Zielstra and Zipf, 2010). Differences in 

positional and temporal accuracy were often found to be the largest in rural areas. Also, issues of spatially 

overlapping features may appear in OSM data, resulting in contradictory information (Schultz et al., 2017). So, 

when using OSM data, its heterogeneity in many respects must be considered. One specific task may only be 

feasible under certain circumstances for a restricted area. 

Nevertheless, studies have shown great potential of OSM data for many applications, such as routing (Ludwig 

et al., 2011) and disaster management (Poiani et al., 2016). In addition, OSM data was successfully developed 

for LULC applications, contributing to the solution and mitigation of existing issues in that field (Estima and 

Painho, 2013; Fonte et al., 2016, 2017, 2019; Schultz et al., 2017). 
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2.1.2 Sentinel 2  

Sentinel-2 is a remote sensing mission of the ESA (European Space Agency) set up to provide “global 

acquisitions of high-resolution multi-spectral imagery with a high revisit frequency” (Drusch et al., 2012). It 

was explicitly designed with free access to facilitate a generation of derivative products, such as landcover 

maps, change detection applications and geophysical measures. Two identical satellites (Sentinel-2 A and B) 

were launched in 2015 and 2017 and are successfully operating until today. The system provides multispectral 

data (13 bands) with a high spatial resolution (10m - 60m; depending on the band), a swath width of 290km, 

and a temporal resolution of five days (Drusch et al., 2012). 

Seninel-2 data can be obtained freely at different processing levels, since it’s part of the Copernicus program 

(Sentinel Online - ESA,  2019). For this work only Sentinel-2 data of processing level 1-C is used, which was 

subjected to multiple preprocessing steps beforehand. These include radiometric and geometric corrections, 

resampling, ortho-rectification, image compression and the calculation of Top-Of-Atmosphere reflectances 

(Sentinel Online - ESA, 2019).  

Deriving valuable information from this extensive data source continues to be an ongoing research topic. 

Existing applications for S2 data include forest and crop monitoring (Guo et al., 2018; Immitzer et al., 2016), 

biomass estimation (Sibanda et al., 2015) and slum mapping (Wurm et al., 2019), which confirms its high 

potential for land cover applications (Thanh Noi and Kappas, 2018). 
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2.1.3 Reference Datasets 

Using reference datasets is common practice for LULC maps (Guo et al., 2018; Ndikumana et al., 2018; Nguyen 

et al., 2018). Therefore, a reference dataset was created for an area of 6.5km*6.5km to provide a 

complementary source of information for this approach, which helps assessing the suitability of LULC classes 

and underlying OSM features.  

Reference data was systematically collected in the context of a VGI workshop between the Universities of Jena 

and Heidelberg from 11 to 12 July 2019. The workshop took place at the Institute of Geography at Friedrich 

Schiller University Jena under the lead of Dr. Michael Schultz, Benjamin Herfort and Janek Voß from the 

GIScience Research Group of the Heidelberg Institute for Geoinformation Technology (HeiGIT). It was 

organized and realized with the support of Dr. Chistian Thiel from the Department of Earth Observation and 

around 60 student volunteers. All participants were master students and future geography teachers from the 

University of Jena, who were provided with necessary skills beforehand. During the workshop, a continuous 

classification for this reference area could be obtained, using very high resolution (VHR) google satellite 

imagery (0.4m spatial resolution) from June 2019. Classes were hand-labelled in QGIS similar to the Corine 

Land Cover legend, following a labelling protocol (see Appendix). The resulting reference dataset is depicted 

in Figure 2. 

  

Figure 2: Reference ground truth dataset (6.5*6.5km). (Abbreviated) legend derived from the Corine Land Cover legend. 
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This area was chosen because of several factors. One strong reason was its great variety of LULC classes, shown 

in Table 1. In addition, OSM data density in this area was found to be above average, which facilitates a 

comparison to OSM data. It is also located within the boundaries of the study area of this work, to allow for 

comparison. Finally, preprocessed, cloud-free Sentinel-2 data could be obtained for the same spatial extent. 

 

Table 1: Distribution of classes and area in hectare per class within the first reference dataset. 

CLC Class CLC Class Name  Area in ha  Class Proportion 

1.1 Urban fabric 1048.78 24.83% 

1.2 Industrial, commercial and transport 
units 

374.60 8.87% 

1.3 Mine, dump and construction sites 84.33 2.04% 

1.4 Artificial non-agricultural vegetated 
areas 277.93 6.58% 

2.1 Arable land 1301.78 30.82% 

2.2 Permanent crops and orchards 12.70 0.32% 

2.3 Pastures 98.21 2.32% 

3.1 Forests 737.47 17.46% 

3.2 Shrub and/or herbaceous vegetation 
associations 

145.56 3.44% 

3.3 Open spaces with little or no vegetation 13.93 0.32% 

4.1 Inland wetlands 42.43 1% 

5 Water bodies 85.99 2.03% 

SUM 4223.71 100% 

 

A second reference dataset created for this work is the result of an accuracy assessment performed to evaluate 

a LULC map (Chapter 2.3.6). This second database contains map class labels and their respective reference 

class labels for the same spatial locations. The number of labels, their spatial or class-wise distribution and the 

unit of assessment are dependent on sampling and response design of the accuracy assessment (Stehman and 

Foody, 2019). By organizing and quantifying this data, various accuracy measures of a LULC map can be 

calculated. This can include common accuracy metrics and a confusion matrix. 
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2.2 Deep Learning 

Today, vast amounts of datasets are collected, distributed and stored every second and with increasing 

magnitudes (Witten et al., 2016). This technological development requires fast and reliable methods to extract 

meaningful information from those datasets. Among others, Machine Learning (ML) techniques like Deep 

Learning have found huge success and popularity recently (Zhu et al., 2017). In contrast to traditional data 

processing methods, ML methods are able to extract valuable information from data, without the need of 

specified instructions. Instead, predictions or decisions are learned by the algorithm itself from patterns in 

data (Witten et al., 2016). 

Regarding their purpose, ML methods can be classified into different categories, such as supervised, semi-

supervised, unsupervised and reinforcement learning. In this work a supervised learning approach is proposed 

due to the nature of the task. In supervised learning, already labelled data is used to train a ML model. This 

requires prior knowledge about the correct label of the respective training sample. From this, the algorithm 

can establish a relationship between input data and output label, using a function approximation.  

Supervised learning may also be separated into classification and regression. In the context of classification, a 

ML model predicts a discrete output category (Y) for each input sample (X). Each prediction is expressed 

through a probability value (e.g. from 0.0 to 1.0), representing the likelihood of X belonging to Y. Depending 

on the application, output categories can be binary (Yes/No, True/False) or non-binary (Class A/B/C…).  In 

contrast to that, regression models predict continuous numerical values as a function of input values (e.g. 

rental rates in response to city districts) (Goodfellow et al., 2016).  

In the last decade, Deep Learning became an important research topic across disciplines, such as medical 

image analysis, recognition tasks and traffic flow prediction, outperforming existing approaches (Kussul et al., 

2017; Ndikumana et al., 2018; Othman et al., 2016). Therefore, DL recently developed into a state-of-the-art 

method in remote sensing applications as well (Othman et al., 2016; Penatti et al., 2015; Zhu et al., 2017). 

Using forms of Neural Networks, DL is a machines ability to automatically learn good feature representations 

from given data by combining simpler feature representation to obtain more complex ones (Goodfellow et al., 

2016). Because DL methods recognize patterns in data by itself, they present a sub-category of Machine 

Learning. Both terms are part of the superordinate category Artificial Intelligence (AI). Whenever a machine is 

capable of solving a specific problem by using an algorithm, the term AI is utilized. However, for AI it is 

irrelevant which rule set, algorithm or technique is applied (Goodfellow et al., 2016). The relationship between 

the terms used is illustrated in Figure 3. 
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Figure 3: Relation of the concepts Artificial Intelligence, Machine Learning and Deep Learning. Image downloaded from https://cdn-

images-1.medium.com/max/1200/1*kz7IAKsfA80QROwXk10kdg.jpeg in March 2019 

Deep Learning concepts and techniques date back the 1940s. Since 2006 the term “Deep Learning” has 

become very popular in the field of Machine Learning (Chen et al., 2014). First works up to the 1960s dealt 

with biological learning and its application to ML, by developing artificial neurons. By 1986, the first Neural 

Network (NN) was developed and trained, using the training method backpropagation (Rumelhart et al., 1988). 

But until the last decade, NN could not be trained in an effective way, making DL a niche application.  

This changed rapidly as Geoffrey Hinton et al. introduced an efficient training algorithm for NN in 2006 (Hinton 

et al., 2006). Together with the development of new software, hardware (especially GPUs), research finding 

and the presence of abundant datasets (keyword: big data), DL nowadays has become one of the leading 

technologies across many disciplines (Castelluccio et al., 2015; Goodfellow et al., 2016).   
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2.2.1 Neural Networks 

A (feedforward) Neural Network (NN) is the main concept of DL. Its purpose is to approximate a non-linear 

function, which best maps input to output values. In the process, this model can learn a set of parameters that 

result in the best function approximation for given training data. Based on networks in the brain, biological 

findings were the source of inspiration to components of artificial NN. One central term borrowed from 

neuroscience is “neuron”. In a NN the neuron constitutes a mathematical unit, which can store, transform and 

pass information it receives to subsequent neurons. When information is processed downstream, without any 

feedback connections, the model is called a Feedforward Neural Network (Goodfellow et al., 2016). 

The architecture of the feedforward Neural Network forms the basis for more sophisticated networks and 

consist of several neurons, organized in layers, and their connections. The number of consecutive layers in a 

NN is referred to as its depth. A Neural Network has an input layer, one or many hidden layers and a single 

output layer. Each layer can have a different number of neurons, which are fully connected to neurons in the 

adjacent layer (Figure 4).  

 

Figure 4: Topology of a basic feedforward Neural Network. Image downloaded from https://cdn-images-

1.medium.com/max/800/1*Gh5PS4R_A5drl5ebd_gNrg@2x.png in March 2019. 

Each neuron takes numerical values from all previous neurons and assigns weights to each of them, expressing 

their importance. Then the weighted sum over all input values is calculated and passed through a (non-linear) 

activation function. Finally, the result of this computation plus a bias value is used as an input to all neurons in 

the next layer, where those steps are repeated. The final output of a supervised NN can either be one neuron, 

containing a single numerical value (regression tasks) or a set of neurons (classification tasks), each holding a 

value. In a classification model, there are as many output neurons as there are classes. Thereby, the value of 

each neuron expresses the class probability of the initial input. To quantify the difference (error rate) between 
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calculated output values and the true value of the data, a cost function is used. Essentially, this cost function 

indicates how well the network performed for the current training sample (Patterson and Gibson, 2017).  

Based on the computed cost, a NN can learn to minimize its error rate through an iterative learning process 

using the gradient descent algorithm. To describe how this algorithm works, we can use an analogy, where the 

function of all parameters (weights) within a model becomes a 3-dimensional landscape. Hills in this landscape 

represent parameter combinations resulting in higher costs (error rates), whereas valleys symbolize 

combinations of lower costs. To reach the bottom of a valley from any initial location, gradient descent takes 

steps towards the steepest direction (negative gradient). This process will repeatedly tweak the function 

(weights), measure resulting costs, and select new weight values that result in lower costs until a local or global 

minimum of the cost function has been reached (convergence) (Figure 5). The step size of the gradient descent 

is referred to as learning rate and presents one of the most important parameters of the model. If the learning 

rate is set too high, the algorithm might overshoot the minimum. If, however, the learning rate is too small, 

training would take too long and the algorithm can get stuck in small local minima (Patterson and Gibson, 

2017). 

 

Figure 5: Example use of the gradient descent algorithm to reduce the cost of a function. Image downloaded from: 
https://i.stack.imgur.com/w7ARo.png in March 2019 

To be able to apply gradient decent in a multilayer NN, a backpropagation algorithm is required. It updates 

connections between hidden layers using the gradient decent described before. Hereby, the algorithm works 

backwards, contrary to the network’s processing direction. For each training sample, the backpropagation 

algorithm starts at the output layer and reversely iterates through all neurons of the hidden layers until it 

reaches the input layer. On its way, it computes how values should be changed for the most effective error 

rate decrease of the current training sample. Averaging all weight changes over all training samples gives the 

negative gradient for the cost function of our NN; in other words: the “direction” of change. However, it can 

become computationally very expensive to calculate a gradient descent over all training samples. So, in 
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practice, only a small random portion, called batch, of all training samples is used to calculate the gradient 

decent (Patterson and Gibson, 2017). Still, all DL networks take a long time to train, but are very fast once they 

are (Chen et al., 2014). When training a DL model, doing one forward and one backward pass over all training 

data is called an epoch. Increasing the size of the training dataset or the number of epochs, will increase the 

accuracy of the model, but especially in the domain of DL, there is always the risk of overfitting it (Goodfellow 

et al., 2016).  

In ML models issues of overfitting happen when the model performs significantly better on training data, than 

on unseen (validation or test) data. This effect is triggered when the model simply memorizes the training 

dataset, instead of extracting meaningful features from it (generalization). With regularization the aim is to 

increase the performance of a model on validation and test data, even at the expense of increased training 

error (Goodfellow et al., 2016). In DL, there are many strategies to add regularization to a model. These 

include: 

o Dropout:  

Dropout is by far the most used regularization technique in DL. The idea is to randomly turn off neurons 

and their connections with a predefined probability during the training phase of the network. At each 

iteration, dropout is initialized randomly again, so that each iteration a different set of neurons is active. 

This prevents the neurons from specializing too much, making the model more robust and general, but 

also reducing its capacity (Dertat, 2017). 

o Dataset Augmentation/Increase: 

At stated before, more data generally results in a better performance. If there was an infinite amount of 

(correct) training data, overfitting would not happen because the model would know every instance of the 

data. Data Augmentation is a way to artificially generate more training samples by transforming existing 

ones. These synthetic samples can be created using techniques like rotation, shifting, resizing, exposure 

adjustment, contrast change and many more, resulting in a much larger training dataset (Dertat, 2017). 

 

However, a DL model does not always have to be trained from scratch. Transfer learning uses an already 

trained model and repurposes it for another task. This method of fine-tuning a pretrained model is  successful 

and effective, if both tasks and training datasets closely relate to each other (Castelluccio et al., 2015). If these 

conditions are met, transfer learning allows using less training data and decreases training time compared to 

training a DL model from scratch (Marmanis et al., 2016). In addition, it can help increasing the granularity of 

a classification (Wurm et al., 2019).  
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2.2.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) arose in the 1970s and describe a kind of Neural Network, which 

specializes in dealing with grid-like information, such as time-series or image data. Historically, CNNs 

developed out of neuroscientific findings by David Hubel and Torsten Wiesel in the 1960s. During their 

experiments, Hubel and Wiesel recorded the activity of individual neurons from the visual cortex of cats, while 

showing them different pictures. In the cat’s brain neurons seemed to resemble patterns displayed on the 

respective picture in front it. They could also observe a division of tasks between neurons. Neurons in the early 

visual system most strongly responded to light patterns and edges within a specific area called the receptive 

field. In contrast to that, neurons in the later visual system behaved more invariant to changes in brightness, 

patterns and position of the picture shown. To summarize, it seems that within the visual cortex information 

is processed in a spatial way with an increasing level of abstraction (Goodfellow et al., 2016).  

CNNs try to mimic this neuronal structure using a set of so-called convolutional layers. A convolution is a 

mathematical operation where at least two functions are offset against each other, resulting in a combination 

both functions. Transferred to a CNN processing an image, the image presents a two-dimensional function 

(x*y pixels), often called input. The input is convolved across defined pixel dimensions with a local function 

called a kernel, in other words a moving window function similar to the concepts of local filters (e.g. high pass 

and Soebel operator). In a CNN, the kernel slides over the input and computes a new value at every position. 

Afterwards, the output values of this process are stored in neurons, which form a so-called feature map (Figure 

6).  

 

Figure 6: Visualisation of the convolving process within a CNN. The output can also be called feature map. Image downloaded from 

http://intellabs.github.io/RiverTrail/tutorial/images/convolution2.png in March 2016. 

Since kernel dimensions are much smaller (e.g 3x3 pixels) than dimensions of the input data, not every input 

value is included in the computation of each output value, like it is the case in a feedforward Neural Network. 
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This property of CNNs called sparse connectivity significantly reduces memory requirements and improves 

computational performance of the model (Goodfellow et al., 2016).  

The fact that the kernel does not change during the sliding operation is a form of parameter sharing and further 

reduces memory requirements of a CNN model. It will do the same operation over the entire input, always 

producing the same output (feature map). This is called equivariance of input and output.  Due to the described 

structure, the kernel possesses a key role in any CNN to produce the desired output. Parameters of the kernel 

should be tuned and optimized, which iteratively happens during the training stage of the whole network. 

Besides the activation function, size, padding and stride are the most important kernel parameters.  

An activation function is applied to all input values inside the kernel window to determine a single output value 

(activation) of one neuron in the resulting feature map. Influential to this output value are also size and 

padding parameters. Size specifies the size of the kernel (e.g. 5x5 or 3x3), whereas padding can be applied at 

the edge of the input (image). Here, where the kernel extends beyond the input, a padding preserves input 

dimensions and considers values at the edge (Figure 7). Lastly, the stride parameter defines the step size when 

moving the kernel over the input and thus influences the size of the resulting feature map (Dertat, 2017; 

Goodfellow et al., 2016). 

 

Figure 7: Use of padding and step size of 1 to maintain dimensionality during a convolution. Own figure, based on image downloaded 

from https://cdn-images-1.medium.com/max/1200/1*W2D564Gkad9lj3_6t9I2PA@2x.gif in March 2016. 

The convolution process is applied to each layer (band) of the input image. The number of layers is referred to 

as depth of the input data. For an RGB-image for example, three convolutions (one for each band) produce 

three separate feature maps. In a CNN, convolution processes are chained after another, whereby the outputs 

(feature maps) of one convolutional layer act as input to a subsequent convolutional layer. Similar to the 

neurons in a cat’s brain, the level of abstraction increases in the process as more complex features are 

calculated. The first feature maps extract low-level features from the input (e.g. edges from an image), 

whereas later feature maps automatically construct higher-level ones (e.g. circular spots in an image) from 

their predecessors (Castelluccio et al., 2015; Gao et al., 2018; Lavreniuk, 2017).  
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Pooling is a mathematical regulation of a CNN. It is usually applied between convolutional layers as a chained 

generalization process. By statistically summarizing nearby values (e.g. neighbouring values) from a feature 

map, pooling serves two purposes: First, it reduces the amount of values that must be stored within the 

network, therefore decreasing training time and computational costs. Second, pooling makes a CNN invariant 

to small changes of the input, similar to the neuronal processes observed in a cat’s visual cortex. Rather than 

preserving the exact position of a feature, pooling emphasizes its existence and its rough location relative to 

other features (Dertat, 2017; Goodfellow et al., 2016).  

Pooling type, pooling window and stride are mandatory parameters of CNN pooling operations. The pooling 

type specifies the kind of pooling applied to a feature map. The most common one is max-pooling, which only 

preserves the maximum value present inside the pooling window (Goodfellow et al., 2016; Volpi and Tuia, 

2017). The pooling window with a definable size (e.g. 2x2 pixels) in turn slides over the feature map with a 

specified stride (e.g. 1 pixel) resulting in a smaller so-called pooling layer (Figure 8). 

 

Figure 8: Application of max pooling with a pooling window of 2*2 and a stride of 2 to generalize a convolutional layer into a pooling 

layer. Image downloaded from https://computersciencewiki.org/images/8/8a/MaxpoolSample2.png in March 2016. 

Putting convolutional layers and pooling layers together constitutes for large part of a CNN. This step can be 

described as the feature extraction part of the CNN. The last step is to classify the previously extracted 

features. This is done by flattening the values from the last layer into a one-dimensional array and passing it 

to one or more fully connected layers (FC-layers), which are built exactly like layers in a Neural Network. Finally, 

the output in the form of, for example, class probabilities is obtained using an activation function like Softmax, 

Rectified Linear Unit (ReLU) or Sigmoid in the final FC-layer (Goodfellow et al., 2016) (Figure 9). 
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Figure 9: Schematic Illustration of the general structure of a CNN. Image downloaded from https://cdn-images-

1.medium.com/max/1200/1*uUYc126RU4mnTWwckEbctw@2x.png in March 2019. 

 

In recent years, Convolutional Neural Networks among other Deep Learning techniques have become one of 

the leading techniques, most commonly used for image analysis. As a result, they have become the gold 

standard for many image-related tasks (Volpi and Tuia, 2017). The main factor for this development was their 

success in multiple image applications (Goodfellow et al., 2016; Volpi and Tuia, 2017). In the remote sensing 

area, CNNs have proven to be effective in a variety of tasks, such as scene classification, (hyperspectral) image 

classification and semantic segmentation (Zhu et al., 2017). 
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2.2.3 Fully Convolutional Networks 

In Semantic Segmentation (pixel-wise classification) each pixel of an input image is classified individually. When 

applying CNNs for Semantic Segmentation tasks, the class of each pixel is generally determined using features 

extracted from the enclosing region (kernel window), disregarding information beyond the edge of it. Also, 

spatial information about extracted features is inevitably lost when using FC-layers at the end (Long et al., 

2015). By increasing kernel size or using pixel patches, deeper and broader features can be extracted by the 

CNN with the disadvantage of increased computational costs and higher loss of spatial accuracy. To resolve 

this tension between information and location, Fully Convolutional Networks (FCN) as a variant of CNNs were 

introduced in 2015 (Long et al., 2015). 

FCNs preserve the 2-dimensional structure of the input image by replacing FC-layers in a CNN with 

convolutional layers. In an FCN, down-sampling through convolutional and pooling layers is complimented 

with up-sampling/deconvolutional layers. Deconvolutional layers transpose the information from the last 

convolutional layer of a CNN to an output layer by utilizing learnable up-sampling parameters. This 

extrapolation is carried out over one or more deconvolutional layers (Long et al., 2015; Shibuya, 2017). The 

result is a reconstructed input image predicting class labels pixel-wise (Figure 10). 

 

 

Figure 10: Structure of the FCN for Semantic Segmentation used by Long et al., 2015. Multiple down-sampling layers are following by 
one up-sampling layer. Image downloaded from http://www.deeplearning.net/tutorial/_images/cat_segmentation.png in April 2019. 

 

Due to its design, FCN offer several advantages. First, it can use an arbitrary sized training dataset to produce 

respectively re-sized output classifications. Second, FCN obtain higher accuracy rates for semantic 

segmentation tasks, since they consider a larger area of the image for feature extraction. And thirdly, 

computational costs are reduced, since each pixel value is only considered once per input image 

(Badrinarayanan et al., 2017; Fu et al., 2017). 
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A central problem when using a simple convolutional-deconvolutional FCN remains: The output image 

becomes coarse and boundaries blur, since the last convolutional layer of a CNN only presents a fraction of 

the input dimensions (width, height). Thus, state-of-the-art FCNs use multiscale classification techniques, such 

as skip-layer network architectures. Here, the output from layers at different levels of the down-sampling part 

are used as inputs for deconvolutional and classification layers. This results in multiple classifications at 

multiple resolutions for the same image. After a bilinear interpolation, which rescales resulting layers to the 

starting resolution, all classifications can be combined to the final output classification using a FC-Layer (Fu et 

al., 2017; Long et al., 2015) (Figure 11).  

 

 

Figure 11: Exemplary illustration of an FCN with a skip-layer architecture combining three deconvolutional layers (prediction layers). 
Image downloaded from https://blog.playment.io/wp-content/uploads/2018/02/fcn_arch_vgg16.png in April 2019. 

 

New FCN models and their predecessors are constantly evolving in the field of DL. A prominent representative 

of this model family is the U-Net model, initially designed for biomedical image segmentation (Ronneberger 

et al., 2015). However, since its development in 2015 it was applied for other segmentation tasks as well, 

winning several Kaggle competitions in the fields of Image Masking, Seismic Image Segmentation and Satellite 

Image Segmentation (Kaggle Team, 2017; Lamba, 2019; Nguyen et al., 2018).  

The U-Net is built upon a standard multiscale FCN structure extending the up-sampling part of the network 

with additional feature channels. The result is a symmetrical, U-shaped fully convolutional network with 

multiple skip-layer structures and 23 convolutional layers (Figure 12) (Ronneberger et al., 2015). 
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Figure 12: Network architecture of the U-Net with its Down- and Up-sampling parts entirely consisting of Convolutional Layers. Note 
that initial image dimensions (572*572 pixels) are interchangeable. Figure based on Ronneberger et al., 2015.  

  

Down-sampling Up-sampling 
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2.3 Approach 

Based on the methods presented in the previous section, the approach used in this work was developed. The 

first step is to make general considerations about the task, which involves requirements against subsequent 

steps of the workflow. Those then consist of multiple preparation measures, namely Data Acquisition, 

Preprocessing and Training Preparation (Figure 13). Eventually the data thus generated is used to train the DL 

classifier. Here, parameter choices and training iterations, as well as the architecture of the network is taken 

into account. The trained classifier is lastly evaluated using an accuracy assessment. 

  
Figure 13: Depiction of preparation steps, divided into Data Acquisition, Preprocessing and Training 

Preparation. Colours are for aesthetic purpose only. 
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2.3.1 General Considerations 

Classifying remote sensing data over large territories and extended time periods comes with challenges, since 

LULC features greatly vary in terms of climatic, topographic and geobotanical conditions (Henry et al., 2019; 

Morrison and Olson, 2005). Over centuries, biogeographical concepts were developed continuously to be able 

to summarize regions of comparable flora and fauna. One project, the Digital Map of European Ecological 

Regions (DMEER), developed by the European Environmental Agency (EEA) and the World Wildlife Fund 

(WWF), introduces the concept of ecoregions covering Europe (Morrison and Olson, 2005). Ecoregions are 

“nested within biogeographic realms and biomes”, sharing the same external borders (Olson et al., 2001). They 

evolved from both historical and regional classification systems as a collaborative effort from more than 1000 

experts of various disciplines. Despite their distinct boundaries, ecoregions should be used with caution, 

because they present a compromise between different taxa and can only present an imperfect abstraction of 

reality (Olson et al., 2001).  

The study area of this work extends across one specific ecoregion in Europe, the “Western European broadleaf 

forests”, due to its abundance of OSM data (Wiki, 2019a) (Figure 14). The study area has a size of 

approximately 492.329km². While the choice of the study area is arbitrary using this approach, the step of 

restricting it to an ecoregion likely facilitates a more characteristic and distinct feature space, which makes 

classification tasks applied to it more straightforward. Also, any chosen study area should contain enough land 

use related OSM data, because it’s used to generate training data for our approach (see Figure 1).  

 

 

Figure 14: Depiction of the study area, which comprises of the ecoregion "Western European broadleaf forests" developed by EEA and 
WWF.  
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The effect of seasonality highly influences land use and land cover, especially when it comes to agricultural 

land, broadleaf forests, pastures and mountain regions (Kussul et al., 2017). Similar to the choice of a study 

area, restricting the acquisition period of all data to one specific season will most likely lead to a more concise 

and precise classification. For this approach, the meteorological summer season of the northern hemisphere 

in 2018 (2018/06/01 – 2018/08/31) was chosen, because of its reduced cloud cover on average. All satellite 

images were acquired within this time period and a snapshot of OSM data from the last day of summer 2018 

(2018/08/31) was taken.  

Lastly, the percentage of cloud cover within remote sensing data is considered. Only satellite images with less 

than 20% cloud cover are selected. Clouds will always cover underlying classes and thus reduce the amount of 

data available for training (Kussul et al., 2017; Ndikumana et al., 2018). Furthermore, context information 

between neighbouring classes can be considered and learned as high-level features by a DL classifier without 

any cloud cover (Fu et al., 2017). By using images with less cloud cover, spatial relations between classes are 

more likely to be preserved, meaning the FCN is able to learn features from them (see Chapter 2.2.1 and 2.2.2).  
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2.3.2 Data Acquisition  

Within the proposed workflow (Figure 1), the first step is to obtain necessary data, more specifically, LULC-

related OSM and S2 data. With regard to considerations defined in Chapter 2.3.1, season, cloud cover, spatial 

and temporal resolution should be paid attention to when acquiring RS data. In order to suceed, the DL 

classifier also has specific requirements against size and format of training data. Therefore, the study area was 

divided into approximately 10500 tiles with an extent of 6.5km*6.5km (Figure 15). At last, OSM and S2 data 

with corresponding spatial extents must be associated to each other unambiguously (e.g. by naming them 

similarly).  

 

Already filtering OSM data in this step reduces both dataset size and acquisition time. Since LULC related OSM 

features are used in this approach, only tags with the keys “landuse”, “natural”, “leisure”, ”tourism” and 

“waterways” need to be obtained. This selection of keys is based on the work of Schultz et al., 2017. 

To fulfil those requirements “sentinelsat Python API” and “Ohsome REST API” along with basic Python libraries 

were used. Those APIs facilitate the use of necessary parameter options to be able to create the desired 

training dataset and are free to use. As a result, both OSM and S2 data is obtained. 

  

6.5km  

Figure 15: Extract of the study area delineating multiple tiles 
(6.5km*6.5km) used to create the training data set. 
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2.3.3 Preprocessing  

Preprocessing covers the process of transforming raw OSM vector data (relations and ways) into annotation 

raster images used to train the DL classifier (see Figure 13).  

Initially, OSM data is further filtered and transformed, creating landuse and landcover classes. Excluding 

incomplete images from all following steps was necessary, since some satellite images obtained for the study 

area could not fulfil the requirement of less than 20% cloud cover within the summer season of 2018. Others 

would not cover the entire extent of a tile (6.5km*6.5km), because trajectories of S2 satellites are not always 

congruent to the extent of tiles. This data loss however must be expected given the relatively short time 

interval of summer 2018 and a 5-day temporal resolution of S2 images. Therefore, approximately 9200 images, 

out of potentially 10500 images (one for each tile) were used for subsequent steps. 

For the legend harmonization process all non-polygonal OSM features were discarded. Remaining LULC-

related polygons are now attributed according to their tag values (Table 2), which results in classified OSM 

polygons. Assignment of tag values to classes follows the approach presented in Schultz et al., 2017. 

 

Table 2: Legend harmonization between OSM tags and Corine Land Cover (CLC) classes, level two legend. 

CLC Class CLC Class Name Corresponding OSM tag values 

1.1 Urban fabric residential 

1.2 Industrial, commercial and transport 

units 

industrial, commercial, retail, harbour, port, railway, lock, marina 

1.3 Mine, dump and construction sites quarry, construction, landfill, brownfield 

1.4 Artificial non-agricultural vegetated 

areas 

stadium, recreation_ground, golf_course, sports_center, common, 

allotments, playground, pitch, village_green, cemetery, park, zoo, 

track, garden 

2.1 Arable land greenhose_horticulture, greenhouse, farmland, farm, farmyard 

2.2 Permanent crops and orchards vineyard, orchard 

2.3 Pastures meadow 

3.1 Forests forest, wood 

3.2 

 

Shrub and/or herbaceous vegetation 

associations 

grass, greenfield, scrub, heath, grassland 

3.3 Open spaces with little or no vegetation fell, sand, scree, beach, mud, glacier, rock, cliff 

4.1 Inland wetlands march, wetland 

5 Water bodies water, riverbank, reservoir, basin, dock, canal, pond 
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Classified OSM polygons were rasterized in the next step (see Figure 13). Here, it was ensured that rasterized 

OSM classes showed similar spatial resolution, projection and extent regarding corresponding S2 images. The 

common issue of overlapping OSM data leading to ambiguous information was handled by always preserving 

smaller polygons respectively (Schultz et al., 2017).  

The last step towards creating ground truth raster data was the detection and classification of possible clouds 

in corresponding S2 images and their transfer to the respective OSM raster as an additional class (Figure 13). 

Because cloud cover conceals every underlying information in an S2 image, any existing classification in the 

related OSM class raster should be overridden with a cloud class at these locations to facilitate an effective 

training of the DL classifier. 

Clouds were detected using Python library “s2cloudless”. The algorithm uses all 10 bands of an unprocessed 

S2 image and assigns cloud probabilities for each of its pixels (Zupanc, 2017). It also allows averaging of 

probabilities over neighbouring pixels and dilation of the cloud mask. Therefore, those parameters offer a lot 

of flexibility in terms of reliability, help mitigate salt and pepper effects and assist in dealing with outlier values. 

In this work a cloud probability of 45%, an averaging of 2 neighbouring pixels and a dilation size of 4 pixels was 

used. Based on empirical experience, this parameter combination presented a compromise between reliability 

and detection sensitivity of clouds for data within the study area.  

The result of all preprocessing steps is an OSM class raster image, which can be assigned explicitly to a 

corresponding S2 image and will be used as annotation data for the DL classifier (Figure 16).  

Figure 16: Example of an annotation image after the preprocessing of OSM data. 
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2.3.4 Training Preparation 

Approximately 9200 data samples (annotations + corresponding S2 images) resulting from preprocessing steps 

(Chapter 2.3.3) were utilized for training, validation and testing of the DL classifier. One data sample consists 

of both S2 image and the corresponding annotation image. 

Initially, coherent patches with a chosen width and height are extracted from randomly selected data samples 

(Figure 17). At the same time, the position of each extracted patch is randomly set within the bounds of the 

respective data sample. This allows for heterogenous image dimensions of data samples and produces any 

desired amount of training data, limited only by the memory capacity of the device used for training the model 

(Fu et al., 2017).  

 

Figure 17: Example of one patch extraction used for training the DL classifier 

With larger patch dimensions (x*y pixels), a DL network will be able to consider more and more complex 

features with the detriment of higher computational costs (Fu et al., 2017). Hence, both patch dimensions and 

number of patches should increase training time and performance of the classifier. However, the Python 

library Keras does not support ignoring a specific class for training a semantic segmentation model. Therefore, 

gaps in training data are always treated similar to LULC classes. During training, the model tries to find 

regularities and patterns for this gap class as well, so that under certain circumstances, pixels can be 

misclassified, which deteriorates the resulting prediction. To tackle this problem, every patch is checked for 

gaps (no data values) in the related annotation image. Only if a patch contains a certain amount of data, it’s 

considered for augmentation and used for training later. The minimum data density used in this approach was 

set to 80%. Consequentially, all patches with a no data proportion of 20% or higher are disregarded hereafter. 

Patches are generated and loaded into the cache in this way until an arbitrary dataset size (number of patches) 

or the memory limit of the training device is reached. 

Balance of under and overfitting is essential (Castelluccio et al., 2015; Dertat, 2017; Nguyen et al., 2018), hence 

existing data is augmented, multiplying its quantity. Choosing appropriate augmentation techniques is key and 
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depends on the performed task. A common practice for image data is to perform colour and/or geometric 

augmentations, such as rotation, flipping, transformation, channel shuffle, grayscale and contrast variation 

(Perez and Wang, 2017). However, for this approach only rotation, batch normalization and flipping methods 

are applied, similar to comparable studies (Castelluccio et al., 2015; Ioffe and Szegedy, 2015; Nguyen et al., 

2018; Volpi and Tuia, 2017). Batch normalization is applied to combat variable illumination conditions between 

images, but additional colour augmentation methods can limit the model’s capacity to identify LULC classes 

with distinct colour representations (Ndikumana et al., 2018; Volpi and Tuia, 2017). Also, any augmentations 

that deform a RS image could cancel out characteristic shapes, such as the linearity of rivers or the angularity 

of agricultural fields.   

When setting up a Machine Learning model, it is common practice to use three different datasets, which are 

applied at different stages of the workflow (Shah, 2017). First, a training dataset is used to fit the model against 

given data by adjusting its parameters. Second, the trained model is evaluated on the validation dataset. Here, 

previously unseen data is facilitated to tune model hyperparameters. After alternating first and second step, 

a final, unbiased evaluation can be obtained by running the trained model on a separate test dataset to 

determine the final performance of the model (Shah, 2017).  

For this approach, those three datasets are obtained by randomly splitting all patches into training, validation 

and test datasets with a rate of 6:2:2 (Chen et al., 2014). Aforementioned augmentation methods are then 

applied randomly and on-the-fly to training and validation datasets, while forwarding them bit by bit to the 

classifier.  

 

2.3.5 Model Setup 

The DL classifier U-Net model was chosen, due to its straightforward implementation, comprehensive 

documentation and proven success in the field of remote sensing (Kaggle Team, 2017; Lamba, 2019; 

Ronneberger et al., 2015). Model and parameters were implemented within Python using the DL library Keras 

running on top of the ML framework Tensorflow. An overview over essential model parameters used in this 

approach can be found in Table 3.  

For training, a maximum of 50000 patches with the size of 256*256 pixels could be collected before the main 

memory capacity of the server was reached. With that data, the U-Net was repeatedly trained for 92 epochs 

with a batch size of 32 patches using Keras’ Early Stopping method, which automatically terminates the 

learning process if no improvement of metrics within a defined number of epochs (“patience” parameter) 

occurs. The network learned using the “Adadelta” optimizer, since this learning rate method “dynamically 

adapts over time [...] and has minimal computational overhead beyond vanilla stochastic gradient descent. 

The method requires no manual tuning of a learning rate and appears robust to noisy gradient information, 

different model architecture choices, various data modalities and selection of hyperparameters” (Zeiler, 2012). 

Learning progress was measured using validation data in combination with the metric “Sparse Categorical 

Cross Entropy”, which quantifies the distance between true and predicted label of each pixel (“Cross Entropy”) 

across multiple classes (“Categorical”), which in turn are encoded as integers (“Sparse”) (Goodfellow et al., 

2016).   
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Table 3: Overview of parameters used for the training of the first DL-classier. 

Parameter Value 

DL-Model U-Net 

Patch Size 256*256 

Training Data Samples 30000 

Validation Data Samples 10000 

Test Data Samples 10000 

Epochs Early Stopping: Patience = 7 Epochs, Metrics = Sparse Categorical Accuracy 

Loss Function Sparse Categorical Cross Entropy 

Evaluation Metrics Sparse Categorical Accuracy + Loss 

Learning Rate Adadelta (adjusting Learning Rate) 

Batch Size 32 (default) 

Dropout Rate 25% 

 

After the first training, 9200 data samples were revised, and a small subset of samples was selected for a 

second training. To this end, 30 data samples with high completeness, class existence and class proportions 

were manually chosen to fine-tune the initial classification using transfer learning (Chapter 2.2.1). A copy of 

the initial U-Net model was built with weights from the first training and afterwards trained with similar 

parameters to create an improved version of first classifier (Table 4). In this work, transfer learning can only 

be applied, because both training datasets are comparable, and classification tasks are identical. Previous 

studies underline the advantages of this method, since it was able to achieve improved classification 

performance with very little training data in similar use cases (Castelluccio et al., 2015; Marmanis et al., 2016; 

Wurm et al., 2019).  

Table 4: Parameters used for the training of the second and final DL-classier. This table includes modified parameters only. Other 
parameters did not change between first and second training. 

Parameter Value 

Training Data Samples 10000 

Validation Data Samples 1000 

Test Data Samples 1000 

Batch Size 16  
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Both trainings were carried out on an Amazon Elastic Compute Cloud instance (EC2). The instance type used 

is called p2.8xlarge intended for general-purpose GPU compute applications. It includes 488 GB of RAM, 8 

NVIDIA TESLA K80 GPUs (96 GB) and the Intel Xeon E5-2686 v4 (32 *2.3-3.0 GHz) virtual CPU processor. 

Training a DL network on GPUs allows for much faster training compared to training it on a CPU processor (Zhu 

et al., 2017) 

 

2.3.6 Accuracy Assessment 

During the automated evaluation process on the test dataset any prediction the model makes is compared to 

the class in underlying annotation data. Considering the particularities and challenges of OSM data, it becomes 

clear that this evaluation strategy is not sufficient for testing the model’s performance. This is because 

underlying annotation data is based on OSM (+clouds), which does not present a reliable source of information 

(Chapter 2.1.1). To still be able to determine the quality of the classification, an accuracy assessment of a 

derived map is proposed. This map is generated by using the final model to predict LULC classes for collected 

S2 RGB-Images (approx. 9200) within the study area.  

Accuracy assessment in the field of RS is a well-established and reliable instrument to evaluate the thematic 

accuracy of LU and LC products and is thus regarded as the gold standard (Stehman and Foody, 2019). The 

accuracy assessment quantifies the agreement between predicted and true classification of every pixel in a 

map, however, it does not cover other aspects of the quality of geodata (Chapter 2.1.1) (ISO, 2013). The three 

key components of an accuracy assessment are sampling design, response design and analysis (Strahler et al., 

2006). 

 

2.3.6.1 Sampling Design 

“The sampling design is the protocol for selecting the subset of assessment units for which the reference 

classification is obtained and then compared to the map classification” (Stehman and Foody, 2019). Here, a 

common strategy of “standard random stratified sampling” is applied to randomly distribute an adequate 

number of assessment units (reference points) across all classes, respecting possible class imbalances. The 

number of assessment units for each class, called sample size, is calculated from formula 1 (Foody, 2009): 

(1) 𝑛 =
𝑧∝/2 

2 𝑃(1−𝑃)

ℎ2  

Where 𝑛 is the sample size for each class, ℎ the confidence interval, 𝑃 the respective class proportion of the 

classification and 𝑧∝ 2⁄  the critical value of the normal distribution, depending on the significance level α. 

Values were set following conventional practice with ℎ = 0.05 and α = 0.95 so that 𝑧∝ 2⁄  = 1.96 (Foody, 2009; 

Schultz et al., 2017). 
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2.3.6.2 Response Design 

“The response design defines how a decision on the agreement between the predicted (map) class label and 

the reference class label is made”(Stehman and Foody, 2019). This includes the spatial unit of the assessment, 

labelling protocol, background imagery and definition of thematic agreement.  

For this approach, the spatial unit of assessment corresponded to S2 RGB pixels with a size of 10m. All 

reference points collected were randomly shuffled across all classes to prevent label regularities. At each 

reference point the class label occupying most of the pixel (>50%) was derived from very high resolution (VHR) 

data (bing aerial image) from late 2018 to minimize time discrepancy between map and accuracy assessment. 

In case clouds occurred within the scene, original S2 images were consulted to validate the cloud class. The 

label of each pixel was set by RS experts via visual interpretation. In the process, interpreters were unaware 

of the predicted map label and followed a labelling protocol. The contents of the labelling protocol included 

minimum mapping unit, which was set to 1 pixel, and class definitions specified in the official Corine 

nomenclature. Class definition used for the labelling protocol can be found in the appendix of this work.  

 

2.3.6.3 Analysis 

The third and last component of the accuracy assessment is the analysis. The focus here is on organizing and 

quantifying different accuracy measures derived from map and reference classifications. Traditionally, this is 

done by using a comprehensive error matrix (Stehman and Foody, 2019). Common metrics addressed within 

the error matrix are Overall accuracy (OA), Producer’s accuracies (Pj) and User’s accuracies (Ui). Producer’s 

accuracies (Pj) are calculated class-wise as the ratio between correctly classified reference points (Pjj) and total 

reference class labels (P+j) (Congalton, 1991): 

(2) 𝑃𝑗 =  𝑝𝑗𝑗/𝑝+𝑗 

Therefore, producer’s accuracy makes a statement about the underestimation (completeness) of a 

classification. In contrast, User’s accuracy (Ui) specifies the overestimation (reliability) of the respective class 

as it can be expressed as the ratio between correctly classified reference points (Pii) and total map class labels 

(Pi+) (Congalton, 1991): 

(3) 𝑈𝑖 =  𝑝𝑖𝑖/𝑝𝑖+ 

Overall Accuracy (OA) is the sum of correctly classified reference points over all classes (q) divided by the total 

number of reference points (Pjj): 

(4)  𝑂𝐴 = ∑ 𝑝𝑗𝑗
𝑞
𝑖=1  

These accuracy metrics can only provide a rough estimation, since accuracy variabilities and class proportions 

of the assessed map are ignored.  Therefore, accuracy measures must be adapted to the sampling design. In 

“standard random stratified sampling” stratified estimators are applied to account for different area 

proportions of classes (�̂�𝑖𝑗) within the map. It can be calculated as 

(5) �̂�𝑖𝑗 =  𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖+
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where 𝑊𝑖 is the proportion of area mapped as class i,  𝑛𝑖𝑗  is the number of samples in a cell (i,j) of the error 

matrix and 𝑛𝑖+ is the number of samples used to calculate the respective parameter (Stehman and Foody, 

2019). Using class proportions to evaluate a map facilitates a weighted assessment of the map’s accuracies. 

By substituting 𝑝𝑖𝑗  with �̂�𝑖𝑗  in formulas (2)-(4) and accuracy measures are recalculated (Card, 1982). 

Consequently, all accuracy measures of the analysis now reflect class proportions within the map. The 

estimator for overall accuracy then is: 

(6) �̂� = ∑ �̂�𝑗𝑗 = ∑ 𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖+

𝑞
𝑖=1   

𝑞
𝑖=1  

producer’s accuracy is: 

(7) 𝑃�̂� =  �̂�𝑗𝑗/�̂�+𝑗 

and user’s accuracy is: 

(8) 𝑈�̂� =  �̂�𝑖𝑖/�̂�𝑖+ 
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3 Results 

This chapter describes classification results for the presented approach. First, training performance of the 

UNet model is presented for two consecutive training iterations. The second model is afterwards used to 

produce a LULC classification for the entire study area (“Western European broadleaf forests”). For the 

resulting map, an accuracy assessment is performed to obtain classification performance. Finally, multiple 

classifications are described in detail, where ground truth data was available. Consequentially, findings of this 

chapter provide a basis for answering the research questions mentioned in the beginning.  

3.1 Training Performance 

Evaluating the performance of the model during and after training indicates to which extent it’s learning to 

classify. Accuracy measures describe the agreement between predicted classes and those used for training. 

Since the reliability of the training data used is compromised by gaps and data quality (Chapter 2.1.1), accuracy 

measures provided by the model can only present a rough estimation of the true classification performance. 

After the first training, which took 17 hours (93 epochs), overall classification accuracy reached 64%. Accuracy 

measures increased significantly during the second training up to 88%, using transfer learning (Chapter 2.2.1). 

Training on the Amazon instance stopped after about 6 hours, which corresponded to 102 epochs. The 

development of sparse categorical accuracy over the course of both trainings is outlined in Figure 18 and final 

accuracy measures are presented in Table 5. 

 

Figure 18: Progression of the Sparse Categorial Accuracy for validation dataset during training of the UNet.  
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Table 5: UNet final classification performances after the first and second training 

Training Loss Sparse Categorical Accuracy (Training) Sparse Categorical Accuracy 
(Validation) 

1 1.41 61.6% 63.8% 

2 0.43 88.1% 88.8% 

 

3.2 Complete LULC Map 

For the extent of the ecoregion “Western European broadleaf forests” a LULC classification was created by 

using the second and final UNet model (Chapter 3.1). First, every S2 image available within this study area for 

the given time period was predicted by this UNet individually. The prediction time for one training sample 

averaged 2.4 seconds which amounts to 6.3 hours in total. Afterwards, all predictions were merged into an 

extensive map depicted in Figure 19. At last, an accuracy assessment of the resulting map classification is 

performed to obtain its thematic accuracy. LULC classification (Figure 19) is not available across the whole 

study area due to characteristics of the approach. Missing classifications within the resulting map can be 

attributed to different steps of the task. Vertical stripes of missing data are caused by the trajectories of 

Sentinel-2 satellites. They mark edges of the acquisition window for complete S2 scenes. In addition, there is 

no classification for S2 images with a cloud cover percentage above 20% (Chapter 2.3.3). The restricted 

acquisition time period of the approach resulted in data loss where no suitable S2 images could be obtained. 

Finally, a LULC classification could not be generated, if the UNet model predicted the “no data” class for a 

pixel. Consequentially, only around 88.8% of the complete study area could be classified.  

Figure 19 shows the complete LULC classification for the chosen study area. It also contains six small extracts 

(I to VI) of the classification at higher spatial resolutions. Those extracts highlight characteristics and 

phenomena of the classification described in the following.  

Extract I 

For Extract I classes Urban fabric (1.1), Pastures (2.3), Forests (3.1) and Water bodies (5) are the most 

dominant. Areas of the class Urban fabric (1.1) with varying sizes are distributed consistently throughout the 

extract. Nearly every agricultural area within it is classified as Pastures (2.3) and only a tiny fraction is 

considered as Arable land (2.1) or Orchards (2.2). The class Water bodies (5) often appears as small, scattered 

spots inside the Forests class (3.1).  

Extract II 

Extract II shows a high proportion of the Forest class (3.1) and some clouds interspersed with classes Urban 

fabric (1.1), Arable land (2.1), Pastures (2.3) and Water Bodies (5). Occasionally, class Shrub and/or herbaceous 

vegetation associations (3.2) is predicted by the UNet classifier inside areas classifier as class Pastures (2.3).  

Moreover, linear structures with deviating classifications can be identified in some spots on the left side of the 

extract. 
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Figure 19: LULC classification for the ecoregion “Western European broadleaf forests’ plus six extracts at higher spatial resolutions. 



 

40 

 

Extract III 

This extract shows a large urban area with classes 1.1, 1.2 and 1.4. It is mostly surrounded by agricultural areas, 

which are mainly classified as Arable land (2.1). Classes 2.3, 3.1, 3.2, 5 and clouds are also visible in the extract 

to a lesser extent. Minor classes like 3.2 and 5 often appear as small, scattered and fragmented. 

Extract IV 

Extract IV covers a scene of divers landuse and landcover. On the left side an urban area characterized by 

classes 1.1 and 1.2 near a river-like structure of class 5 can be identified. The central part of the extract consists 

of arable land (2.1) interspersed with patches of forests (3.1) and urban areas (1.1 and 1.2). Rectangular shapes 

of no classification visible in the extract match the form of S2 images used. The right side of the scene contains 

a large forest area, consistently interrupted by unusual patterns of classes 3.2 and 5.  

Extract V 

Extract 5 shows a large agglomeration, mostly classified as Urban fabric (1.1). In contrast to urban areas in 

Extracts III and IV there is little to no occurrence of other urban classes (1.2, 1.3 and 1.4). Furthermore, class 

3.2 takes up a lot of space here, compared to the previous extracts I to IV. Class 2.3 can often be found near 

class 1.1, sometimes forming a fringe around it. The extract also shows linear classification borders, which are 

particularly noticeable. 

Extract VI 

An apparent feature of this extract is its chequered classification pattern. This pattern mostly occurs on top of 

areas classified as Shrub and/or herbaceous vegetation associations (3.2) and happens between classes 3.1 

and 3.2. In addition, agricultural and urban classes are absent for the most part of the extract, which is 

dominated by classes 3.1 and 3.2. Inside forest areas (3.1), the class Inland wetlands (4.1) appears as 

fragments, similar to class 5 in Extract IV. 

A total of 942 reference points is used to assess the thematic accuracy of the map. Quantity and distribution 

of these is calculated using formula 1 with a confidence level of 95% (Chapter 2.3.6.1). To facilitate any 

calculation of accuracy metrics a minimum of 20 reference points per class is set. The number of reference 

points per class and the absolute and relative distribution of classes across the map is specified in Table 6. 

Most frequent classes in the map are Forests (3.1), Pastures (2.3) and Arable land (2.1). Several classes occupy 

less than 0.1% of the map respectively. These include Mine, dump and construction sites (1.3), Permanent 

crops and orchards (2.2) and Inland wetlands (4.1). Class Open spaces with little or no vegetation (3.3) is absent 

in the map. Approximately 4% of the map is predicted to be clouds and around 11% of the area is not classified 

at all (Table 6).  
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Table 6: Distribution of classes, number of pixels per class, class proportions and reference points for the LULC classification of the 
complete study area  

CLC Class CLC Class Name Number of Pixels Class Proportion Reference Points 

- No Data 508.264.472 11.17% - 

1.1 Urban fabric 201.327.350 4.43% 51 

1.2 Industrial, commercial and transport units 17.850.358 0.39% 20 

1.3 Mine, dump and construction sites 1.143.113 0.03% 33 

1.4 Artificial non-agricultural vegetated areas 13.505.774 0.3% 20 

2.1 Arable land 806.120.276 17.72% 172 

2.2 Permanent crops and orchards 47.563 0% 20 

2.3 Pastures 1.082.141.359 23.79% 212 

3.1 Forests 1.341.590.407 29.49% 239 

3.2 Shrub and/or herbaceous vegetation associations 361.930.022 7.96% 88 

3.3 Open spaces with little or no vegetation 0 0% 0 

4.1 Inland wetlands 1.624.015 0.04% 20 

5 Water bodies 28.097.902 0.62% 20 

- Clouds 361.930.022 4.09% 47 

SUM 4.549.587.957 100% 942 

 

Table 7: Confusion matrix of the accuracy assessment from the LULC map of the complete study area. Map classification is set against 
reference classification at the reference point location. The agreement between both classifications is presented in percent. 

Classes 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 4.1 5 clouds 

1.1 56.9 5 9.1 15 1.8 15 2.4 0.4 0 0 10 0 

1.2 17.6 80 12.1 10 0.6 5 2.4 0 1.1 0 0 2.1 

1.3 2 0 6.1 0 0 0 0 0 0 0 0 2.1 

1.4 9.8 10 15.2 25 1.2 0 0.5 0.4 0 0 0 0 

2.1 9.8 0 15.2 20 72.9 30 34.1 7.9 20.5 0 0 2.1 

2.2 0 0 0 0 1.2 10 1.9 0 1.1 0 0 0 

2.3 2 0 12.1 0 14.1 20 47.9 1.7 22.7 0 5 6.4 

3.1 0 0 15.2 25 7.6 20 9 83.3 46.6 100 55 0 

3.2 2 5 12.1 0 0.6 0 0.5 4.6 8 0 0 0 

4.1 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 3 5 0 0 1.4 1.7 0 0 30 0 

clouds 0 0 0 0 0 0 0 0 0 0 0 87.2 
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Figure 20: Corrected producer’s and user’s accuracy values plus confidence intervals for each class derived from the accuracy 
assessment of the LULC map covering the complete study area. 

Reference class labels were collected following the response design (Chapter 2.3.6.2) and are set against the 

map classification using an error matrix ( 

Table 7). Unweighted overall accuracy reaches 57.3% between map and reference classification. Best 

classification performance with over 80% agreement is estimated for classes Industrial, commercial and 

transport units (1.2), Forests (3.1) and clouds. On the other hand, multiple classes show accuracy values below 

30%. These are the classes Mine, dump and construction sites (1.3), Artificial non-agricultural vegetated areas 

(1.4), Permanent crops and orchards (2.2), Shrub and/or herbaceous vegetation associations (3.2) and Inland 

wetlands (4.1). Except for classes 1.2 and 3.2, every class with a proportion of the map smaller than 1% reaches 

accuracy values lower than 50% at the same time (Table 6). Accordingly, most classes with a larger map 

proportions also show higher classification accuracies. Strong over- or underestimations towards specific 

classes can be observed for classes 1.1, 2.1, 2.3, 3.1, 4.1 and 5. The matrix reveals that 17.6% of the class Urban 

fabric (1.1) should be classified as Industrial, commercial and transport units (1.2). An indication of this 

overestimation can be seen in Figure 19 (Extract V). Table 7 also indicates mutual confusion between classes 

2.1 and 2.3. Class 2.1 overestimates 14.1% towards class 2.3, while in turn, 34.1% of class 2.3 should be 

classified as class 2.1. For class 3.1 an overestimation of 7.9% relates to Arable land (2.1). Reference points 

collected for class 4.1 indicate a misclassification of 100% for that class. The entire class should be classified 

as Forests (3.1), which coincides with observations in Figure 19 (Extract VI). Differentiating Forests (3.1) from 

Water bodies (5) creates difficulties for the UNet classifier. Figure 19 (Extract II and IV) and the confusion 

matrix present this confusion both visually and in numbers. Despite its comparatively high proportion of the 

map (Table 6), Shrub and/or herbaceous vegetation associations (3.2) shows very low classification accuracy 

at 8 %. Overestimation of this class happens towards multiple classes, primarily 2.1, 2.3 and 3.1. This result is 

consistent with observations of Figure 19 (Extract VI). 

With the chosen sampling design any accuracy measures derived from the confusion matrix must be adapted 

to account for different class proportions within the map. Estimated producer’s and user’s accuracies plus 

confidence intervals are illustrated class-wise in Figure 20. 
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After recalculating accuracy measures, weighted overall accuracy reaches 62.2%. In Figure 20 producer’s 

accuracies above 70% are found for classes Urban fabric (1.1), Forests (3.1) and clouds. This stands in stark 

contrast to low producer’s accuracies of classes Mine, dump and construction sites (1.3), Artificial non-

agricultural vegetated areas (1.4), Permanent crops and orchards (2.2), Shrub and/or herbaceous vegetation 

associations (3.2), Inland Wetlands (4.1) and Water bodies (5), which do not exceed 20%. Highest user’s 

accuracy is estimated for classes Pastures (2.3), Forests (3.1) and clouds. The cloud class stands out, since it 

shows perfect reliability having 100% user’s accuracy. However, user’s accuracy values don’t exceed 67% for 

any other class. Inland wetland (4.1) is the only class with user’s accuracy below 20%. In general, producer’s 

accuracies can peak higher than user’s accuracies, but also drop lower for some classes. In turn, user’s 

accuracies behave more stable overall, not varying as much. Using corrected measures impacts the accuracy 

assessment in many ways. This is expressed by differences between confusion matrix (Table 7) and corrected  

producer’s accuracies (Figure 20). Here, estimated producer’s accuracy values increases by more than 10% for 

classes 1.1, 2.3 and 3.2. On the contrary, producer’s accuracy values decreases by more than 10% for classes 

1.2, 1.4 and 5. In addition, a connection between confidence intervals and class proportions (Table 6) can be 

established. The three largest classes, 2.1, 2.3 and 3.1, all show confidence intervals smaller than 7%. On the 

contrary, classes covering less than 1% of the map’s area have larger confidence intervals of more than 10% 

up to 48% (class 1.3). Just as for the confusion matrix, accuracy values are lower for classes with small class 

proportions.  
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3.3 Reference LULC Map 

In this chapter multiple classifications for the same area are extensively compared to the reference dataset 

(Ground Truth) to work out strengths and weaknesses of each classification. Although findings and phenomena 

are only partly applicable to the complete study area, they can still provide valuable hints towards 

shortcomings and challenges of the respective classification. An illustration of applied classifications and 

reference dataset is presented in Figure 21. 

 

Figure 21: Visual comparison between different classifications of the Reference Dataset (Upper left). Upper right: OSM data classified 
using legend harmonization. Lower left: Classification predicted by the UNet after first training on the complete training dataset. 

Lower right: Predicted classification after training the UNet classifier on a selected subset of the training dataset (second training). 
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The figure suggests a strong similarity between ground truth (upper left) and underlying OSM data, whereby 

sporadic data gaps are visible for the OSM-based classification (upper right). The prediction of the UNet 

classifier from the first training (lower left) shows a low level of detail and lacks class variance. In addition, this 

classification is interspersed with artefacts and inaccuracies at class boundaries. In contrast to that, the UNet 

classifier after the second training (lower right) provides a higher level of detail and class variance. The 

granularity of the classification has improved visibly, whereas classification impurities decreased within the 

reference area.  

Figure 22 highlights differences between ground truth data (reference dataset) and two selected 

classifications. The first one is the classification derived from OSM data using legend harmonization (Chapter 

2.3.3), the other one is predicted by the UNet after the second training (Chapter 3.1). Grey areas show an 

agreement between classifications, whereby other colours reveal the respective class assignment for areas of 

disagreement.  

Figure 22: Reference dataset vs OSM data and vs. classification of the UNet model after the second training. Coloured areas show 
differences through the class assignment in the respective dataset, whereas grey colour indicates areas of agreement. 
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Ground truth and OSM classification visibly disagree for agricultural and infrastructural areas (Figure 22). A 

large part of the data gaps in the OSM classification (upper right) appears to correspond with the class 

Industrial, commercial and transport units (1.2) in the reference dataset (upper left). The prediction of the 

classifier (lower right) in comparison to the reference dataset (lower left) shows the strongest discrepancy at 

the borders of the UNet classification, resulting in outline effects at the edges of classes. To be able to quantify 

the level and direction of disagreement and between classifications with great detail, two confusion matrixes 

are employed. 

Table 8: Confusion matrix of ground truth (reference dataset) vs. OSM classification showing class assignments in percent. Numbers in 
yellow boxes show the proportion of agreement for the respective class. A similar confusion matrix with absolute pixel numbers is 
available in the Appendix of this work.   

Classes 0 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 4.1 5 

0 0.2 0 0 0 0 0 0 0.1 0 0.1 0 0 0 

1.1 5.9 90 0.2 0.9 7.6 0.8 0 0.9 0.2 3.2 0 0 0.3 

1.2 36.1 3.6 90.9 0.1 2.8 1.2 0 9.6 0.5 23.8 0 0 1.5 

1.3 2.5 1.2 4.3 97.5 1 0.4 0.4 6.6 0.2 0.6 18.3 0 0 

1.4 13.7 2.4 0.6 0.2 76.3 1.1 0 12.3 0.6 15.7 20.4 0 3.5 

2.1 14.6 1 0.2 0.1 3.2 84.1 44.6 23.3 0.3 7 0 0 0 

2.2 0.2 0 0 0 1.3 0.3 54 0 0 0.6 0 0 0 

2.3 1.9 0 0 0 0.1 5.9 0.9 8.5 0 0.4 0 0 0 

3.1 9.3 0.8 2.3 1.1 4.4 0.6 0 14.4 95.5 31.4 3.2 100 7.8 

3.2 12.3 0.9 1.4 0 1.9 2.7 0 21.8 2 15.9 58.1 0 0.6 

3.3 1.4 0.1 0.1 0 1.1 0.2 0 2.5 0.1 0.4 0 0 0 

4.1 2 0 0 0 0 2.3 0 0 0.3 0.1 0 0 0.9 

5 0 0 0 0 0.3 0.4 0 0 0.4 0.8 0 0 85.4 

Comparing ground truth and OSM classifications (Table 8) an agreement of 77.4% between the two 

classifications can be observed. The OSM classification shows a no data proportion of 7.9% for the whole area 

(see Appendix), while its largest proportion (36.1%) is assigned to Industrial, commercial and transport units 

(1.2) in the reference dataset. Overall best performing classes with over 90% agreement are Urban fabric (1.1), 

Industrial, commercial and transport units (1.2), Mine, dump and construction sites (1.3) and Forests (3.1). 

Accuracy is lower than 15% for classes Pastures (2.3), Shrub and/or herbaceous vegetation associations (3.2), 

Open spaces with little or no vegetation (3.3) and Inland wetlands (4.1). However, when considering class 

proportions, less than 1% of the area is classified as Open spaces with little or no vegetation (3.3) or Inland 

wetlands (4.1) in the reference dataset (see Appendix). The OSM classification shows the highest absolute 

disagreement for class Arable land (2.1). Here, an overestimation of 5.8% relates to the class Pastures (2.3) 

and is clearly visible in the left side of Figure 22. Class Urban fabric (1.1) is also overestimated in the OSM 

classification and relates to class 1.2 (3.6%) and 1.4 (2.4%). Other areas of disagreement often appear as 

fragments at the very edges of continuous classifications like rivers, residential areas and streets. 

Misclassification is common in the context of small-scale structures like standalone buildings inside large 

continuous areas (Figure 22). If gaps present in the OSM classification are disregarded for the calculation of 

accuracy measures, OA reaches 83% inside the reference area.  
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Table 9: Confusion matrix of ground truth (reference dataset) vs. predicted classification (UNet trained on subset) showing class 
assignments in percent. Numbers in yellow boxes show the proportion of agreement per class. A similar confusion matrix with 
absolute pixel numbers is available in the Appendix of this work. 

Class no data 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 4.1 5 

no data 0.6 0 0.1 0 0 0 0 0 0 0 0 0 0 

1.1 0.3 86.8 1.8 0.6 3.2 0.9 0 0.2 0 0.8 0 0 0.2 

1.2 7.6 4.7 70.5 4.2 5.9 2.1 4.3 0.2 1.2 8 0 0 0.1 

1.3 12.3 0.8 4.3 80.8 0.4 0.6 3.6 3.2 0 1.3 0 0 0 

1.4 6.6 3.7 3.2 3.4 66.3 2.8 0 1.1 0.7 7.5 0 0 3.5 

2.1 28.8 0.8 4.9 1.3 3.3 83.4 18 8.1 0.8 13.4 0 0 0 

2.2 6.3 0 0.3 0 0.4 0.2 71.9 0 0 1.8 0 0 0 

2.3 0.9 0 0 0 0.3 3.3 0 78.8 0.1 4.1 0 0 0 

3.1 13 1.5 5.4 5.9 9.6 1.7 0 6.7 93.7 14 0 0 10.1 

3.2 16.8 1.3 7.3 3.8 6.7 2 1.7 0 0.9 48.7 0 0 0 

3.3 0 0.2 2.3 0 0.1 0.2 0 0 0.1 0.2 0 0 0 

4.1 0 0 0 0 0.5 2.5 0 1.5 0.4 0.2 0 0 0 

5 6.6 0 0 0 3.3 0.3 0.6 0.2 2.1 0 0 0 86.2 

The UNet model can classify the reference area with an OA of 82.9%. Only a very small number of pixels is 

predicted as no data (316 pixels, see Appendix). Best performance is reached for classes Urban fabric (1.1) 

Forests (3.1) and Water bodies (5), while other classes like Artificial non-agricultural vegetated areas (1.4) and 

Shrub and/or herbaceous vegetation associations (3.2) have lower agreements (Table 9). Just like the 

classification derived from OSM data (Table 8) classes 3.3 and 4.1 are omitted in this classification. In contrast 

to that, agreement increased for many classes compared to the OSM data classification. Class Pastures (2.3) 

shows the biggest improvement with an accuracy of 78.8%, coming from 8.5% for the OSM classification. Also, 

accuracy for class Shrub and/or herbaceous vegetation associations (3.2) increased from 15.9% to 48.7% 

between the two classifications. Figure 22 visualizes over- and underestimation of classes specified in Table 9.  

Although performance of class Urban fabric (1.1) is high with 86.8%, an apparent overestimation of this class 

by the model can be observed (Figure 22 – bottom right). More than 4% of the pixels would belong to class 

Industrial, commercial and transport units (1.2) and another 3.7% of its pixels should be classified as Artificial 

non-agricultural vegetated areas (1.4). When looking at the spatial distribution, overestimation mainly 

happens at edges and inside the Urban fabric (1.1) area. Especially small-scale structures like streets and 

commercial areas inside larger residential areas are not considered by the model. Neighbouring Artificial non-

agricultural vegetated areas (1.4) like gardens and parks also cannot be distinguished clearly from the Urban 

fabric (1.1) class, which further contributes to the overestimation.  A second striking overestimation by the 

model relates to class Arable land (2.1), however, unlike in the OSM classification, overestimation is more 

distributed across multiple classes for the UNet classification. Finally, Artificial non-agricultural vegetated areas 

(1.4) are not only underestimated, but also overestimated for some areas, which makes it a particularly volatile 

class. Overestimation for this class happens especially towards classes Forests (3.1) with 9.6%, Shrub and/or 

herbaceous vegetation associations (3.2) with 6.7% and Industrial, commercial and transport units (1.2) with 

5.9%.  
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4 Discussion 

The previous chapter displayed that the proposed method produced a weighted overall accuracy of 62.2%. 

Accuracy values vary largely among classes. Some LULC classes, like Forests (3.1), Urban fabric (1.1) and clouds 

can be derived from S2 data and OSM features with satisfactory accuracy (> 70%), while others cannot be 

recognized with comparable performance (Figure 20, Table 7). The results show multiple explicit class 

confusions that could partly originate from their similarity in terms of spectral signatures. Strong intensity of 

class confusion occurred between classes Arable land (2.1) and Pastures (2.3) (Table 7). Both are large classes 

linked to anthropogenic cultivation practice and are therefore more intensely effected by seasonality than 

other LULC classes (Kussul et al., 2017). Merging those two classes into one yield higher overall accuracy as 

confusion is cut. When considering class proportions to (re-)calculate accuracy measures, larger classes tend 

to profit from it by increasing in terms of accuracy, whereas smaller class tend to drop in accuracy (Figure 20, 

Table 7). A weighted accuracy assessment was especially important for this approach, because of imbalanced 

class proportions within the study area (Table 6). The size of the study area (492.329km²) and its abundance 

of OSM data (92% coverage, see appendix) could be one reason why there is a 20.7% gap between study and 

reference area when it comes to overall accuracy values. In a larger classification area heterogeneity of classes 

typically increases, which can blur class specific feature space (Mellor et al., 2015). This approach attempts to 

deal with this phenomenon by restricting the study area to an ecoregion (Chapter 2.3.1). Previous studies also 

revealed that class imbalances during the training of a ML classifier can deteriorate classification accuracy 

significantly (Mellor et al., 2015; Thanh Noi and Kappas, 2018). However, the impact of unbalanced training 

datasets has not been investigated for LULC applications in connections with FCN models yet. Resulting 

accuracy metrics and their distribution among LULC class strongly corresponds to comparable studies in this 

field (Fonte et al., 2017; Schultz et al., 2017). Those studies achieved over 80% OA using a Random Forest 

classifier in small (< 350km²), predominantly urban areas with high OSM data density. Strong parallels to 

characteristics of the reference area (Chapter 3.3) suggest that the presented approach can be used 

competitively in a similar setting. Potential shortcomings and error sources have to be identified and addressed 

where possible. Therefore, the following sections focus on those at different stages the workflow. 

4.1 Data Characteristics 

Among other things, classification performance always depends on the quality of training data. This is 

especially important in the field of ML, where a lack of data quality influences both training and prediction of 

a classifier (Oreski et al., 2017). The three datasets used in this work (Chapter 2.1) can be affected by quality 

issues for several different reasons.  

Applying OpenStreetMap data for LULC mapping is linked to challenges. OSM can only provide an incomplete 

land use and land cover estimation for a given area, due to its heterogeneity regarding all five dimensions of 

geospatial quality (ISO, 2013; Neis and Zielstra, 2014; Schultz et al., 2017; Zielstra and Zipf, 2010). Quality 

control, which systematically identifies and filters out errors in OSM data, could be used to tackle its 

shortcomings. In this work, quality control in relation to completeness was addressed using regulation of OSM 

data density, since it’s very different across LULC-related OSM features (Chapter 2.3.4). Forest and residential 

polygons, for example, often cover large, continuous areas, whereas small-scale structures like ponds and 
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construction sites are often surrounded by or are near data gaps. Thus, increasing data regulation might lead 

to more unbalanced class proportions, because small-scale OSM features are more likely to be disregarded in 

the process. Therefore, finding a suitable data density threshold, adapted to the data situation within the study 

area, can facilitate a more accurate LULC classification. OSM data is constantly changing, so creating a LULC 

map with one homogenous timestamp is challenging. This inconsistent temporal resolution inevitably reduces 

temporal accuracy of any derived map. To minimize errors caused by time-related deviation of OSM data, the 

Ohsome REST API was used to extract LULC-related OSM data for any point in time (Chapter 2.3.1). Positional 

accuracy of OSM data was addressed by removing any occurring overlaps following (Schultz et al., 2017). 

However, this robust approach can omit relevant settings and still needs to be evaluated since there are other 

options for dealing with overlaps in OSM data (Fonte et al., 2016). In summary, quality issues related to OSM 

data are subject to ongoing research and difficult to completely resolve due to the nature of VGI.  

Sentinel-2 images form the second dataset in this work. Like OSM data, they play a vital role in this work by 

training the DL classifier. Therefore, quality of S2 data is equally important to facilitate an accurate LULC 

classification. Although S2 data used in this approach was subject to a preprocessing conducted by the ESA, 

S2 images still contained variable illumination conditions, truncations and highly reflective pixels. Truncations 

were addressed by removing incomplete images before the training process (Chapter 2.2.3). To compensate 

for brightness irregularities between images, batch normalization was applied in this work (Chapter 2.3.4). 

However, the success of those measures remains doubtful with regard to characteristics and phenomena 

observable in the LULC map of the study area (Figure 19). Besides regional differences of landuse and 

landcover, variable illumination conditions influence the way a DL classifier learns and interprets separate LULC 

classes (Kussul et al., 2017). This may aggravate the differentiation of classes for the classifier, which potentially 

leads to areas of (mis-)classification and classification artefacts. Classes with similar spectral signatures like 

Forests (3.1) and Water bodies (5) are particularly prone to confusion, as can be seen in Figure 19 (Extracts I,II 

and IV) and Table 7. In previous studies this challenge was addressed by using time-series image data, which 

also resolves the problem of a discontinuous LULC map (Guo et al., 2018; Kussul et al., 2017). However, 

creating and interpreting maps, which are made from a mosaic of multitemporal data comes with its own 

challenges. A multitemporal map normally requires more S2 images from a longer time period, potentially 

disregarding seasonal effects of LULC (Yuan et al., 2005). It may also suffer from noise effects and longer 

update cycles (Leinenkugel et al., 2019; Ndikumana et al., 2018). Using Seninel-1 radar images instead of 

Sentinel-2 images also resolves this problem, since radar seamlessly captures the earth’s surface regardless of 

clouds, rain and time of day. Nevertheless, Sentinel-1 images have several disadvantages compared to 

Sentinel-2, mostly due to the nature of radar data. These include, speckle effects, limited availability, 

inconsistent acquisition strategies and complex data structures (Torbick et al., 2017). Other studies explored 

the potential of very high resolution RS data (Volpi and Tuia, 2017; Wurm et al., 2019) for LULC classification 

with promising results in small-scale scenarios. Also, utilizing additional spectral bands and common RS indices 

for LULC classification has proven to be effective in similar scenarios and could present an improvement for 

this approach in the future (Leinenkugel et al., 2019; Nguyen et al., 2018; Thanh Noi and Kappas, 2018) .  
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The two created reference datasets may have shortcomings, which can impact findings described previously 

(Chapter 3). Since both datasets were gathered by the means of manual digitization, labelling mistakes cannot 

be excluded (Leinenkugel et al., 2019). Time gaps between background and S2 imagery can also compromise 

the quality of reference data, although they were kept short in this approach (Chapter 2.3.6.2). Possible 

inaccuracies of class definitions provided by the labelling protocol (see Appendix) may lead to classification 

errors as well. In addition, potential quality issues occur when it comes to number and distribution of reference 

points used in the accuracy assessment. Table 6 shows that multiple small classes were assessed with not 

more than 20 reference points. This can affect accuracy measures like reliability (user’s accuracy) of a class 

and confidence intervals (Figure 20). Reference datasets are always estimations of the true classification and 

should not be considered perfect, since human errors are not completely avoidable when creating them 

(Stehman and Foody, 2019).  

 

4.2 Preprocessing 

Preprocessing steps implemented for this approach can be another factor impacting the results of this work 

(Chapter 2.3.3). Potential errors can emerge from the legend harmonization between OSM values and Corine 

Land Cover (CLC) classes. Research shows, that the process of translating OSM values to LULC classes is 

associated with ambiguities and further difficulties (Arsanjani and Vaz, 2015; Estima and Painho, 2013; Fonte 

et al., 2019; Schultz et al., 2017). In this context, three central questions are raised:  

1. Which OSM features should be used for the creation of a LULC map? 

First, it should be decided, which type of OSM features are employed. Using only polygonal features avoids 

additional preprocessing steps at the cost of losing potentially relevant LULC features (Arsanjani and Vaz, 2015; 

Schultz et al., 2017). However, to be able to include point or line features, additional steps, like the conversion 

of lines into polygons or the extraction of information from points inside polygons, have to be performed 

(Fonte et al., 2019). This effort comes with challenges, since setting up additional processing steps and 

parameters can potentially present new error sources. In this context, Figure 21 suggests that utilizing line 

features like roads and highways in this work could be beneficial, since it might increase annotation data 

density with respect to class Industrial, commercial and transport units (1.2). Lastly, chosen OSM features 

should be analysed regarding their relevance for the respective LULC application. Not every OSM feature is 

needed and wanted when creating a LULC map, therefore a common approach is to filter out OSM features 

by means of their attributes (Arsanjani and Vaz, 2015; Fonte et al., 2017, 2019, 2016; Schultz et al., 2017). The 

majority of remaining OSM features is similar across all mentioned studies, but there are still discrepancies 

due to different filtering approaches. In the end, these decisions of inclusion or exclusion of OSM features 

change the data basis for consecutive steps and thus also impact classification performance. 

2. Which conversion rules can be established? And how? 

Because OSM data was not explicitly created for the purpose of mapping landuse or landcover, a conversion 

from relevant OSM tags, keys or values to a designated LULC legend is needed. This translation can be based 
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on the description of tags in the OSM Wiki and nomenclatures of the respective LULC product (Fonte et al., 

2019). Moreover, prior studies can support remaining translation decisions and can help to identify 

ambiguities and uncertainties (Arsanjani and Vaz, 2015; Schultz et al., 2017). However, there has been no 

comprehensive, systematic and empirical evaluation of individual conversion rules so far, which makes it 

difficult to estimate the magnitude of conversion mistakes and its potential for improvement.  

3. How can overlapping OSM features be addressed? 

Dealing with overlaps due to insufficient positional accuracy of OSM features is addressed in three different 

manners by existing studies. One way is to always preserve the smaller polygon respectively in case overlap 

happens (Schultz et al., 2017). Other approaches include assigning priorities to classes (Fonte et al., 2019) and 

using automated topological cleaning (Arsanjani and Vaz, 2015). The influence of all three methods on 

classification performance has not been evaluated and therefore presents another potential error source. 

In this approach, other potential error sources during preprocessing of OSM data include rasterization 

inaccuracies and cloud detection errors. Due to rasterization results (Figure 16, Figure 19, Figure 21) and high 

accuracy values for the cloud class (Figure 20), it can be concluded that those effects are negligible.  

4.3 Setup and Training  

Finally, setup and training of the FCN classifier present the last key aspect of this work. Some of the 

shortcomings identified in the results section can completely or partially be explained with configuration 

decisions, model or workflow characteristics. FCN models generally require a specific input size across all 

training data to train and predict images (Henry et al., 2019; Long et al., 2015). To facilitate the use of input 

images with various dimensions different approaches have been proposed by previous studies. One way is to 

resize all images to specific dimensions (e.g. 512*512 pixels), which can be suitable if dimensions do not vary 

largely across the dataset (Othman et al., 2016; Penatti et al., 2015). Another way is to use smaller subsets of 

images, which can be called image patches (Fu et al., 2017). Extracts V and VI of Figure 19 clearly show edge 

effects using image patches for this work. These include misclassifications and salt and pepper effects (Figure 

19). One possible explanation for this is, that each patch (256*256 pixels) is interpreted in isolation by the 

classifier, which has no information about adjacent patches and classes. This missing context information could 

play alongside class similarities and insufficient discrimination skills of a classifier to create those effects for 

some patches. Increasing the ability of a classifier to distinguish classes from each other could help dealing 

with this challenge. One approach could be to increase the patch size, which allows a DL model to consider 

more and increasingly complex features, which would increase computational costs as well (Fu et al., 2017). 

Another strategy could be to support the DL classifier in the process of differentiating classes more reliably, 

by improving training data or training parameters. Future research could also investigate the potential of using 

different, more recent DL models with regard to edge effects and classification accuracy. 

Using OSM data involves dealing with a lack of completeness (Neis and Zielstra, 2014; Zielstra and Zipf, 2010) 

and restricting this data source to LULC-related features aggravates this issue. While Keras and Tensorflow are 

among the biggest DL Python libraries, their semantic segmentation models do not support ignoring data gaps 
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so far. Consequentially, missing data in annotation images is always interpreted an independent class during 

the training process. In this way, results of this work contain a small amount of no data pixels (Figure 19, Table 

9), whereby most of the no data class in the complete study area (Table 6) stems from missing S2 data, which 

is pointed out in Figure 19. By setting a reasonable data density (Chapter 2.3.4), misclassification towards the 

no data class was minimized in this work. Nevertheless, resolving this technical obstacle would likely increase 

classification performance. 

As part of the second training, improving underlying training data could lead to significantly better results. In 

this context, focus could be set on: 

• Increasing amount and spatial distribution of samples across the study area (Dertat, 2017) 

• Creating a more balanced dataset by selecting class-specific areas (Leinenkugel et al., 2019) 

• Introducing quality control measures to reduce initial misconceptions. 

Ideally, combining all three measures supports training the DL classifier most effectively, but takes additional 

effort and research work. In the process, manual work should be avoided to facilitate reproducibility, 

systematization and faster implementation. After the map creation, additional post-processing methods could 

also help to increase classification accuracy. The success of post-processing methods in connection with LULC 

maps is confirmed by several studies and part of current research efforts (Fu et al., 2017; Henry et al., 2019; 

Kussul et al., 2017). Most prominently, Conditional Random Fields (CRFs) are applied to help mitigate salt and 

pepper effects and refine class boundaries (Fu et al., 2017). Looking at outline effects in Figure 22 or class 

artefacts in Figure 19 (Extract IV and VI) CRFs or other post-processing techniques have the potential to 

improve the results of this work.  
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5 Conclusion 

This thesis presented an approach for creating land use and land cover maps from open data sources using 

Deep Learning methods. DL techniques were applied since they incorporate higher-level features, including 

textures and geometric features and can therefore be considered superior to traditional RS classifiers in terms 

of mapping performance (Othman et al., 2016). Focus of the work was placed on generation and assessment 

of resulting maps with CLC legend for the ecoregion “Western European broadleaf forests”. In total, 9200 

Sentinel-2 scenes ranging from June to August 2018, as well as corresponding LULC-related OpenStreetMap 

features were acquired for that task. In addition, reference data was produced in the context of a Volunteered 

Geographical Information workshop by more than 40 student contributors in cooperation with the University 

of Jena in July 2019 to facilitate further analysis of results. The following process of creating two LULC map, 

including preceding acquisition and processing steps, was explained step by step for reproducibility. 

Resulting maps were described and quantitatively assessed by conducting two accuracy assessments.  Here, 

overall accuracy reached 62.2% for the study area and 82.9% for the reference area. Accuracies varied largely 

between 0% to 88% and 0% to 95% respectively. Best performance was reached for classes Forests (3.1) and 

Urban fabric (1.1) inside the study area. On the contrary, classes Mine, dump and construction sites (1.3), 

Artificial non-agricultural vegetated areas (1.4) and Inland wetlands (4.1) performed poorly with less than 20% 

accuracy. These accuracy outcomes correlate with findings from earlier studies (Fonte et al., 2019; Schultz et 

al., 2017) indicating high potential of this approach.  

Abundance of OSM data, size, distinct features and urban properties were found to be strong factors to why 

classification accuracy was much better within the reference area. In both maps, strong confusion was found 

between agricultural areas (classes 2.1, 2.2 and 2.3). Consequentially, merging those could increase overall 

accuracy of resulting maps but also reduces thematic depth. Also, a connection between small class 

proportions and low accuracy values could be derived. Since the UNet classifier had difficulties dealing with 

underrepresented classes, balancing classes in training data likely improves classification performance 

(Leinenkugel et al., 2019; Mellor et al., 2015). This indicates that the amount of data required to successfully 

train small LULC classes is inversely proportional to the amount of data provided by OSM features, where small 

classes are often surrounded by gaps. Thus, improving quantity and quality of underlying training data can be 

identified as a key objective to create more accurate classifications in future works. Other potential measures 

include using more spectral bands or adding band indices, reworking the translation ofy OSM values into LULC 

classes and introducing post-processing methods. Also, multiple specialized classifiers could be employed to 

address classes individually. 

Although this work does not reach quality levels of regional, tailor-made LULC products, it supports the fast 

and simple generation of LULC information for any given region, provided that enough OSM features are 

present. It also allows the generation of LULC maps, while considering seasonality, variable input dimensions 

and cloud cover. Moreover, it explores the possibilities of using a Fully Convolutional Network in combination 

with transfer learning, open data and open-source software to create an automated and modular workflow 

from end-to-end. 
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  Appendix 

 

1. Labelling Protocol 

Code Class Description 

1.1 Urban fabric 

Areas mainly occupied by dwellings and buildings used by administrative/public 

utilities or collectivities, including their connected areas (associated lands, 

approach road network, parking-lots) 

1.2 

Industrial, 

commercial 

and transport 

units 

Areas mainly occupied by industrial activities of transformation and 

manufacturing, trade, financial activities and services, transport infrastructures 

for road traffic and rail networks, airport installations, river and sea port 

installations, including their associated lands and access infrastructures. 

Includes industrial livestock rearing facilities 

1.3 

Mine, dump 

and 

construction 

sites 

Artificial areas mainly occupied by extractive activities, construction sites, man-

made waste dump sites and their associated lands 

1.4 

Artificial non-

agricultural 

vegetated 

areas 

Areas voluntarily created for recreational use. Includes green or recreational 

and leisure urban parks, sport and leisure facilities 

2.1 Arable land 

Lands under a rotation system used for annually harvested plants and fallow 

lands, which are permanently or not irrigated. Includes flooded crops such as 

rice fields and other inundated croplands 

2.2 
Permanent 

crops 

All surfaces occupied by permanent crops, not under a rotation system. 

Includes ligneous crops of standards cultures for fruit production such as 

extensive fruit orchards, olive groves, chestnut groves, walnut groves shrub 

orchards such as vineyards and some specific low-system orchard plantation, 

espaliers and climbers. 

2.3 Pastures 

Lands, which are permanently used (at least 5 years) for fodder production. 

Includes natural or sown herbaceous species, unimproved or lightly improved 

meadows and grazed or mechanically harvested meadows. Regular agriculture 

impact influences the natural development of natural herbaceous species 

composition 

3.1 Forests Areas occupied by forests and woodlands with a vegetation pattern composed 

of native or exotic coniferous and/or deciduous trees and which can be used 
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for the production of timber or other forest products. The forest trees are 

under normal climatic conditions higher than 5 m with a canopy closure of 30 % 

at least. In case of young plantation, the minimum cut-off-point is 500 subjects 

by ha. 

3.2 

Shrub and/or 

herbaceous 

vegetation 

associations 

Temperate shrubby areas with Atlantic and alpine heaths, sub Alpine bush and 

tall herb communities, deciduous forest re-colonisation, hedgerows, dwarf 

conifers. All transitional forest stages development (regenerative and 

degenerative: natural development of forest – bushy formations on abandoned 

meadows, pastures or forest clear cut and also forest after calamities of various 

origin). Dry thermophilous grasslands of the lowlands, hills and mountain zone. 

Poor Atlantic a subAtlantic mat-grasslands of acid soils; grasslands of 

decalcified sands; Alpine and sub Alpine grasslands. Humid grasslands and tall 

herb communities; lowland and mountain mesophile pastures and hay 

meadows. 

5.0 Water bodies 

low floating aquatic vegetation with species such as Nuphar spp., Nymphaea 

spp., Potamageton spp. and Lemna spp.; archipelago of lakes inside land areas; 

water surfaces used for fresh-water fish-breeding activities; fish ponds and 

water reservoirs temporarily without water (seasonal lack of water, 

maintenance, etc. 

 

2. Confusion matrix of the accuracy assessment from the LULC map of the complete study area. Map 

classification is set against reference point classification on a pixel level. Numbers in yellow boxes show 

the number of agreeing pixels at the reference points of each class. 

Classes 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 4.1 5 clouds 

1.1 29 1 3 3 3 3 5 1 0 0 2 0 

1.2 9 16 4 2 1 1 5 0 1 0 0 1 

1.3 1 0 2 0 0 0 0 0 0 0 0 1 

1.4 5 2 5 5 2 0 1 1 0 0 0 0 

2,1 5 0 5 4 124 6 72 19 18 0 0 1 

2.2 0 0 0 0 2 2 4 0 1 0 0 0 

2.3 1 0 4 0 24 4 101 4 20 0 1 3 

3.1 0 0 5 5 13 4 19 199 41 20 11 0 

3.2 1 1 4 0 1 0 1 11 7 0 0 0 

4.1 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 1 1 0 0 3 4 0 0 6 0 

clouds 0 0 0 0 0 0 0 0 0 0 0 41 
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3. Confusion matrix of ground truth (Reference dataset) vs. OSM data showing class assignments 

pixelwise. Numbers in yellow boxes show the number of agreeing pixels per class 

Classes no data 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 4.1 5 SUM 

no data 61 24 1 0 1 14 0 11 1 15 0 0 1 129 

1.1 1975 99513 34 38 1515 1211 0 75 125 367 0 0 25 104878 

1.2 12099 4026 15082 5 566 1682 0 818 328 2715 0 0 139 37460 

1.3 839 1317 716 3985 194 627 3 559 105 71 17 0 0 8433 

1.4 4604 2694 95 10 15238 1569 0 1049 405 1798 19 0 312 27793 

2.1 4898 1061 30 5 629 120255 300 1986 219 795 0 0 0 130178 

2.2 80 0 0 0 257 494 363 2 6 68 0 0 0 1270 

2.3 629 0 2 0 24 8374 6 720 18 48 0 0 0 9821 

3.1 3104 878 375 44 879 835 0 1230 62032 3590 3 73 704 73747 

3.2 4115 948 236 0 377 3832 0 1853 1275 1813 54 0 53 14556 

3.3 461 66 19 0 223 332 0 214 33 45 0 0 0 1393 

4.1 655 3 0 0 0 3303 0 0 190 9 0 0 83 4243 

5 8 0 0 0 62 509 0 0 240 86 0 0 7694 8599 

SUM 33528 110530 16590 4087 19965 143037 672 8517 64977 11420 93 73 9011 422500 

 

4. Confusion matrix of ground truth (Reference dataset) vs. predicted classification (UNet trained on 

subset) showing class assignments pixelwise. Numbers in yellow boxes show the number of agreeing 

pixels per class. 

Classes no data 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 4.1 5 SUM 

no data 2 34 32 0 9 44 0 2 3 3 0 0 0 129 

1.1 1 101875 652 33 797 1384 0 10 30 85 0 0 11 104878 

1.2 24 5552 25426 234 1469 3088 31 10 804 817 0 0 5 37460 

1.3 39 996 1545 4502 90 908 26 176 18 133 0 0 0 8433 

1.4 21 4320 1171 191 16496 4090 0 62 432 772 0 0 238 27793 

2.1 91 917 1768 72 833 124048 129 441 508 1370 0 0 1 130178 

2.2 20 37 91 0 92 331 516 0 0 183 0 0 0 1270 

2.3 3 51 6 2 80 4898 0 4292 74 415 0 0 0 9821 

3.1 41 1811 1947 326 2386 2563 0 363 62198 1427 0 0 685 73747 

3.2 53 1485 2624 210 1655 2914 12 0 623 4980 0 0 0 14556 

3.3 0 238 826 0 30 236 0 0 44 19 0 0 0 1393 

4.1 0 0 0 0 123 3768 0 82 248 22 0 0 0 4243 

5 21 36 1 1 827 428 4 9 1405 3 0 0 5864 8599 

SUM 316 117352 36089 5571 24887 148700 718 5447 66387 10229 0 0 6804 422500 
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